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SUMMARY

Calculations of unsteady flows using a simplified marker and cell

(SMAC), a pressure-impllcit splitting of operators (PISO), and an

iterative time-advanclng scheme (ITA) are presented. A partial

differential equation for incremental pressure is used in each

time-advancing scheme. Example flows considered are a polar cavity flow

starting from rest and self-sustalned oscillatory flows over a circular

and a square cylinder. For a large time-step size, the SMAC and ITA are

more strongly convergent and yield more accurate results than PISO. The

SMAC is the most efficient computationally. For a small time-step size,

the three time-advancing schemes yield equally accurate Strouhal numbers.

The capability of each time-advanclng scheme to accurately resolve

unsteady flows is attributed to the use of a new pressure correction

algorithm that can strongly enforce the conservation of mass. The

numerical results show that the low frequency of the vortex shedding is

caused by the growth time of each vortex shed into the wake region.

*Resident Research Associate at NASA Lewis Research Center.
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NOMENCLATURE

coefficient for u i velocity of discrete momentum equation

side of square cylinder

coefficient for temporal discretlzation (i-I,2,3)

frequency, f-I/T

reference length

pressure

radius of circular cylinder

normal distance measured from bottom wall of polar cavity

period of vortex shedding

time

reference velocity

velocity component, ui=[u,v_

cartesian coordinates

increment

angle (unit in degree)

molecular viscosity

density

summation

non-dimensional time, r - tUo/L

tlme-level

neighboring grid points
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INTRODUCTION

For incompressible flows, the conservation of mass acts as a

constraint condition that the velocity field needs to satisfy; while in

compressible flows, the conservation of mass is given as a partial

differential equation for the temporal variation of density. Due to this

distinct difference, recent developments of numerical methods to solve

compressible flows are mostly concentrated on unsteady Navier-Stokes

equations while those for incompressible flows are mostly concentrated on

steady Navier-Stokes equations. Thus the numerical methods to solve

unsteady incompressible flows have been reported only sporadically even

though one of the earliest numerical methods to solve an unsteady,

incompressible flow appeared as early as 1965 [i].

A careful examination of various unsteady incompressible flow

solution techniques can provide a valuable guideline for a further

extension of these numerical methods to solve more complex unsteady flow

problems. The accuracy, convergence nature, and computational effort of

SMAC [2], PISO [3,4] and ITA are examined by solving a polar cavity flow

[5] starting from rest and self-sustalned oscillatory flows over a

circular cylinder [2] and a square cylinder [6].

The ITA is a direct extension of steady flow solution techniques to

solve unsteady flows. In the method, a steady flow solution technique is

used iteratively to obtain a converged solution for each time-level.

Therefore, the ITA can be computationally heavy.

The marker and cell (MAC) scheme was originally developed to solve

an unsteady free-surface flow. The method was simplified to solve an

unsteady laminar flow over a circular cylinder by Braza et al. [2] and a

few other flow cases' cited in the reference. The name "marker and cell"
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has been retained in Ref. [2] and in the present study even though the

numerical method itself has nothing to do with the "marker and cell" for

the unsteady flows considered in these studies. Two slightly different

schemes,varying in the complexity of the pressure equation, have been

presented in Ref. [2]. The more complex case requires almost the same

computational effort as that of PISOwhile the accuracy remains the same

as that of the simpler case, and hence only the simpler case is

considered herein. The simpler case is recast in a discrete form so that

the context maybe consistent with the other time-advanclng schemes.

The PISO [3] was proposed to avoid the heavy computational effort of

ITA. Calculations of a laminar flow through a suddenly expanding pipe and

a compressible flow entering a suddenly expanding closed pipe can be

found in [4]. In the present study, the PISO [3,4] is modified to be

memory efficient, which results in a slightly increased computational

effort than the original PISO. For clarity, the modified PISO is

described in detail in this paper.

In the pressure correction algorithm used in this paper, the

incremental pressure is obtained by solving a partial differential

equation for incremental pressure, which yields a strongly diagonally

dominant system of equations for the incremental pressure. It has been

shown in a number of numerical calculations of various two- and

three-dimensional flows that the present method yields strongly and

highly convergent results even when highly graded and skewed meshes are

used to discretize the flow domain [7-10]. For example, the pressure

correction algorithm yields a grid independent solution for a 3-D curved

duct flow with a very small number of grid points and it can reduce the

mass imbalance at least a few orders of magnitude smaller than those



obtainable using various other pressure correction algorithms [9].

NUMERICAL METHODS

The incompressible laminar flow equations are given as;

auj
m O.

axj

(1)

a(pu i) a a [ au i auj)]_ ap+ __(puiu j) _ -- i_(-- + -- (2)

at aXj axj [ axj ax i ) Ox i

where Puiu i and Puiu j (i_j) represent the nonlinearity in each component

of the momentum equation aad the nonlinear coupling between the u i- and

uj-velocity, respectively. Repeated indices imply summation over the

index unless otherwise stated.

The unsteady flow solution techniques are implemented on a

pressure-staggered mesh and the incremental pressure is obtained by

solving a partial differential equation for incremental pressure. Only a

few necessary details of the present pressure correction algorithm are

summarized in "Iterative Time-Advancing Scheme" sub-section even though

the same pressure correction algorithm is used for each of the unsteady

flow solution techniques. Details on the pressure correction algorithm

can be found in Refs. [7-9].

The transient term in the momentum equation is treated implicitly.

The temporal variation of pu i can be discretized as

a(PUi) n n-I n-2

PClU i - PC2u i + PC3u i
at

(3)



where (CI,C2,C3) -(1/At,l/At,0) and (3/2At,4/2At,i/2At) for the first and

the second order difference approximations, respectively. Since a few

different time-advancing techniques are discussed below, the consistency

of a few notations related to each tlme-advancing scheme is confined to

each time-advancing scheme and each of such notations is explained only

when it appears for the first time in each sub-section.

Iterative Time-Advancin_ Scheme (ITA)

The initial guesses for the new time-level velocity (ui*) and

pressure (p*) are set equal to those of the previous time-level. The

discrete momentum equation based on the guessed flow variables can be

written as

. ** . ** . 0p*

(PCI + Ai)ui - X {AkUk } + Si ---

nb @x i

n-! n-2

+ PC2u i - PC3u i ,

no sum on i, (4)

where ui** is a predicted velocity, Ai* is the coefficient of the

ui**-velocity, Si* is a source term originating from a skewed mesh, and

the coefficients Ai* and Si* are evaluated using the initial guess. The

predicted velocities are obtained by solving eq. (4). The predicted

velocities are not necessarily divergence free, and hence the velocities

are corrected to satisfy the conservation of mass. Let ui*** and p** are

the corrected velocity and pressure that satisfy the conservation of

mass. Then

u i -- u i + u'i, (5)

** p* ,p - + p (6)



where p' is the incremental pressure. The discrete momentum equations

which satisfy the conservation of mass can be written as

@p*** *** * *** * n-i n-2

(pC 1 + Ai)u i - _ {AkUk } + S i + PC2u i - pC3u i ,

nb Bx i

Subtracting eq. (4) from eq. (7) yields;

no sum on i, (7)

i ap'

u i' - -- , no sum on i, (8)

(pC I + A_) 8x i

where the pressure gradient is left in continuous form deliberately. It

is discussed later that the velocity-pressure decoupling that occurs when

various pressure correction algorithms are used for a pressure-staggered

mesh is caused by using a discretized pressure gradient in eq. (8) in

deriving the discrete pressure correction equation. In deriving eq. (8),

the summation over the neighboring grid points are disregarded. Retaining

the residual originating from the neighboring grid points cause the

numerical results to depend on the under-relaxatlon parameter [9].

Applying the conservation of mass to eq. (5) yields

au' j auj

axj axj

(9)

a { i ap'_ auj
Oxj (PCI+A _) OxjJ Oxj

for the incremental pressure given as;

(i0)

Substituting eq. (8) into eq. (9) yields a partial differential equation



where the last term in eq. (I0) represents the mass imbalance. The

incremental pressure is obtained by solving eq. (i0) and the velocities

and pressure are corrected using eqs. (5) and (6), respectively. The

above procedure needs to be iterated using ui*** and p** as new initial

guesses until the differences between the old and the new corrected

velocities and pressures, respectively, becomenegligibly small; and the

converged solutions represent the flow field of the current time-level.

A single iteration of the ITA can not account for the nonlinearity

in the momentumequation. However, the flow equations are solved

iteratively until the convergence criteria are met at each time-level,

the nonlinearity in each componentof the momentumequation and the

nonlinear coupling of u-and v-velocity are fully accounted for in the

method.

In each of the time-advancing schemesdiscussed in this paper, the

incremental pressure is obtained by solving a partial differential

equation for the incremental pressure. As all the central-differenced

finite volume equations for self-adjoint second order elliptic partial

differential equations are strongly diagonally dominant, the present

discrete pressure correction equation is strongly diagonally dominant

even for a highly skewedmesh. On the other hand, consider deriving a

discrete pressure correction equation from eq. (8) using a discretized

pressure gradient in eq. (8). Substituting eq. (8) into eq. (9) and

integrating it over a pressure control volume yields a system of

equations for incremental pressure which is not diagonally dominant. In

such a case, the mass imbalance for a particular pressure grid point

produces large pressure corrections for the adjacent pressure grid



points, and the veloclty-pressure decoupllng occurs. In case a discrete

pressure gradient is used in eq. (8) to derive a system of discrete

pressure correction equations, only a fully-staggered mesh or the

momentum interpolation schemes [11-12] can yield a diagonally dominant

system of equations for the incremental pressure. However, the

fully-staggered mesh is not an optimal grid layout for complex

geometries; and the momentum interpolation scheme can not account for the

grid skewness and it also yields a numerical result that depends on the

under-relaxation parameter unless a specialized interpolation scheme is

adopted [9,12]. However, the present pressure correction scheme does not

yield a numerical result that depends on the under-relaxatlon parameter,

since eq. (i0) clearly states that the incremental pressure is driven

only by the mass imbalance.

Simplified Marker and Cell Scheme (SMAC)

The SMAC and PISO are non-lteratlve tlme-advanclng schemes and

hence, an initial guess is not necessary for these schemes. The discrete

momentum equations based on the flow variables of the previous time-level

can be written as

n-i * n-i * n-I apn'l

(pC I + A i )u i - 7. {Ak Uk} + Si

nb ax i

n-i n-2

+ PC2u i - PC3u i ,

no sum on i, (ii)

where ui* is the predicted velocity, Ai n'l is the coefficient of the

* sin-iu i -velocity, is a source term originating from a skewed mesh, and

the coefficients Ai n'l and sin'l are evaluated using the flow variables

of the previous time-level. The predicted velocities are obtained by



solving eq. (ii). The predicted velocity field maynot satisfy the

conservation of mass, thus the predicted velocities need to be corrected

to satisfy the conservation of mass. Let uin be the velocity that satisfy

the conservation of mass. Then

n * a4

u i - ui , (12)

ax i

where 4 is an auxiliary potential field. Taking divergence of eq. (12)

yields

i _ m I

o
(13)

which can be solved in the same way as that for eq. (I0). The divergence

free velocity field for the current time-level is obtained using eq.

(12). In the SMAC, the search for the flow field of the current

time-level is concluded by obtaining a consistent pressure (p*) that

satisfies the momentum equation. The discrete momentum equation for the

current time-level can be written as

n-i n n-i n n-I aP n

(pc I + A i )u i - _ {Ak uk) + Si

nb ax i

n-I n-2

_ _ + PC2u i -- PC3u i

no sum on i (14)

Subtracting eq. (ii) from eq. (14) yields;

n * a

pCl(ui _ ui ) (pn _ pn-l),

ax i

where Ai n°l has been disregarded since Ain'l<<pC I for a very small

(15)

i0



time-step size. Substituting eq. (12) into (15) yields

or

8
(pCl4) (pn _ pn-l)

axi axI

pn _ pn-i + PCl4 (16)

where the spatial variation of CI has been neglected.

In eq. (14), the coefficients of the uin-velocity and the source

term originating from a skewed mesh have not been updated. Thus SMAC can

not account for the nonlinearity in each component of the momentum

equation. It also can not account for the nonlinear coupling of u- and

v-veloclty unless the discrete u- and v-momentum equations are solved

simultaneously as a single system of equations.

The velocity field obtained using the SMAC satisfy the conservation

of mass strongly at each tlme-level. However, due to the use of an

over-slmplified pressure equation, eq. (16), the velocity and pressure

fields may not satisfy the conservation of momentum rigorously. In fact,

the over-simplifled pressure equation can overshoot the pressure and it

may yield a non-physical solution when the second order temporal

discretizatlon is used. On the other hand, the use of the first order

temporal discretlzation always yields as accurate numerical results as

those obtainable using the ITA or PISO incorporating the second order

temporal discretization. This unusual behavior of the SMAC indicates that

the second order temporal discretization is not quite compatible with the

over-slmplified momentum equation.

A more elaborate SMAC presented in Ref. [2] has also been tested in

the course of the presen t study, however, any significant improvement in

ii



accuracy was not observed. The sameobservation has also been expressed

in Ref. [2]. On the other hand, the computational effort of the

alternative schemebecomescomparable to that of the PISO.

Pressure-Implicit Separation of Operators (PI$_

The discrete momentum equation based on the flow variables of the

previous time-level can be written as

n-I * * aP n-I n-i n-2

(PCl + Ai )u i - H i + PC2u i -- PC3u i , no sum on i, (17)

where

ax i

* n-i * n-I

H i - _ (Ak uk} + Si

and the notations used in eq. (17) are the same as those for eq. (Ii).

The predicted velocity is obtained by solving eq. (17). The predicted

velocity field is not necessarily divergence free, and hence the velocity

field needs to be corrected to satisfy the conservation of mass. Let u i

and p* are the first corrected velocity and pressure that satisfy the

conservation of mass, respectively. Then

ui - u i + ui, ' (18)

p* _ pn-i + p, (19)

where u' i and p' are the first incremental velocity and pressure,

respectively. The discrete momentum equations which satisfy the

conservation of mass can be written as

n-i ** . ap* n-I n-2

(PCl + Ai )u i - H i ---- + PC2u i -- PC3u i , no sum on i, (20)

ax i

12



Subtracting eq. (17) from eq. (20) yields;

1 @p'

u i' - -- --, no sum on i, (21)

(pC 1 + An'l ) ax i
i

where the summation over the neighboring grid points and the source

term originating from a skewed mesh have been disregarded in deriving

eq. (21). Applying the conservation of mass to eq. (18) yields

au'j auj

axj axj

Substituting eq. (21) into eq. (22) yields a partial differential

equation for the incremental pressure given as;

w

a { I ap' ] auj
0xj (pC I + An-1 ) J 0xj

J

(22)

(23)

where the last term in eq. (23) represents the mass imbalance. The first

incremental pressure is obtained by solving eq. (23), the first corrected

pressure is obtained from eq. (19), and the first corrected velocity is

obtained using eqs. (18) and (21). The first corrected velocity may

satisfy the conservation of mass, but it does not satisfy the momentum

equation according to Ref. [3,4]. Let the velocity and pressure that

satisfy the momentum equation be ui*** and p**, where ui*** and p** are

the second corrected velocity and pressure, respectively. The discrete

momentum equation based on the second corrected velocity and pressure can

be written as

13



** *** ** ap** n-I n-2

(pC 1 + A I )u i - H i + PC2u I - PC3u i , no sum on i, (24)

where

ax i

H i - _ {Ak u k} + S i ,

nb

Ai** and Si** are evaluated using the first corrected velocity, and the

momentum equation has been written in an explicit form to correct the

velocity and pressure without solving a system of equations. Subtracting

eq. (20) from eq. (24) yields;

** ** . ap"
fW

(pC 1 + A i )u i - H i - H i - --, no sum on i, (25)

ax i

where Ai n-I can be set equal to Ai** without incurring large error since

Aj << pC I and

##

u i - u i - u i (26)

p'' - p** - p* (27)

are the second incremental velocity and pressure, respectively. Inserting

eq. (25) into eq. (26) and taking divergence of eq. (26) yields;

a{iA** 0p]a i Hj *](28)-- ii i I

axj (pC I + J" axj axj ,(pc I + A** 1

The second incremental pressure is obtained by solving eq. (28), the

second corrected pressure is obtained from eq. (27), and the second

corrected velocity is obtained from eqs. (25) and (26).

The present PISO algorithm is slightly different from that of Issa

[3] in the load vector term of eq. (28). In the original PISO algorithm,

14



the coefficients of the discrete momentum equation need to be stored to

evaluate the load vector in eq. (29). In the present PISO algorithm, only

the resultant given as H**-H* needs to be stored to solve the second

pressure correction equation. The present method is more memory efficient

than the original PISO, while it requires more computational efforts.

This modification has been motivated by the experience, obtained from

numerical calculations of three-dimensional flows [9-i0], that the

required memory to solve complex three-dimenslonal flows may easily

exceeds the current computer capacity. The modified PISO can better

account for the nonlinearity in each component of the momentum equation

since the updated residuals are used in solving the second pressure

correction equation.

In the first corrector step of the PISO, the velocity and pressure

are corrected to satisfy the conservation of mass. In the second

corrector step, the velocity and pressure are corrected to satisfy the

momentum equation. Therefore, the driving force of the second pressure

corrector step is obtained from the momentum imbalance even though the

pressure correction equation is still derived from the conservation of

mass. Consequently, the velocity field at each time-level may not satisfy

the conservation of mass very accurately and this forms the fundamental

difference between the SMAC and PISO. As in the SMAC, the PISO algorithms

can not accurately resolve the nonlinear coupling of the u-and v-momentum

equations unless the discrete u- and v-momentum equations are solved

simultaneously as a single system of equations.

NUMERICAL RESULTS

Numerical results for the polar cavity flow [5] starting from rest

15



and self-sustained unsteady flows over a circular cylinder [2] and a

square cylinder [6] obtained using the ITA, SMAC and PISO are presented

below. Calculations of the example flows using the ITA and PISO show that

the second order implicit time-stepping scheme yields stable numerical

results for the time-step size as large as ten times of that for the

first order implicit rime'stepping scheme. The numerical results

presented in this section are obtained using the first order temporal

discretization for the SMAC and the second order temporal discretlzation

for the ITA and PISO.

The computational effort for each unsteady flow solution technique

depends only slightly on each particular flow problem to be solved, the

number of grid points and the number of time-steps, but it depends very

strongly on the c0nvergence criteria used. Since the System of equations

are solved iteratively using a TDMA [13], one set of convergence criteria

needs to be prescribed for the TDMA sweeps. The error norm used for the

TDMA sweep is given as;

1 1

lel_ - IRk,_/Ro,_ I < _ (29)

where _ - {u,v, or p} denotes each velocity component and pressure, R o

and R k are the sums of the absolute residuals of the discrete equation

for every grid point evaluated at the initial and at the k-th sweep of

TDMA, and a21 is the convergence criterion for the _-th flow variable.

The SMAC and PISO are noniteartive time-advanclng schemes, thus only the

above set of convergence criteria needs to be prescribed. For the ITA,

another set of convergence criteria is needed for the iterative solution

of the flow equations. The error norm used for ITA is given as

16



2 n n n 2
lel_ - MAX{ABS[(Ak,2 Ak_I,_)/Ao,_]jlj-I,N) < c_ (30)

where Ano,_ denotes the maximum _-th flow variable at the n-th

time-level, Ank,_ is the 2-th flow variable at the k-th iteration, and N

denotes the number of grid points. In the ITA, the flow variables at each

time-level evolve iteratively, thus an accurate solution for each

discrete system of equations at each iteration is not necessary. Hence a

much smaller maximum number of TDMA-sweeps than those for the SMAC and

PISO can be assigned to avoid excessive TDMA-sweeps that can be caused by

eq. (29). The convergence criteria used are ¢_i _ {ix10-7, ix10-7

ixl0 "2) and c22 - (ixlO "2, ixl0 "2, IxlO'2]. The numbers of maximum

TDMA-sweeps for the SMAC and PISO are II, Ii, i00 for the discrete u-,

v-, and p-equation, respectively; and those for ITA are 5, 5, ii for the

u-, v-, and p-equatlon, respectively. The maximum number of iterations

for the ITA at each time-level is II. The computational efforts (CRAY/YMP

cpu-time) per each grid point and per each time step for the above

convergence criteria are shown in Table I. The use of slightly larger

convergence criteria, smaller number of TDMA-sweeps and smaller number of

iterations (for ITA) can decrease the computational effort significantly

without losing the accuracy noticeably.

Polar Cavity Flow Starting From Rest

The lid-drlven polar cavity flow is schematically shown in Fig.

l-(a). The Reynolds number based on the lid velocity and the depth of the

cavity is 350. The measured steady state velocity profiles can be found

in Ref. [5]. The flow domain is discretized by 81x81 grid points. The

evolution of u 8 at (ry,8) - (0.246, 0.0) is shown in Fig. l-(b). The

17



normalized time for the polar cavity flow is based on the lid velocity

and the depth of the polar cavity. For a large time-step size (&f=0.05),

the SMAC yields a slightly unstable numerical result at r=l and the PISO

does not yield a convergent solution. The calculated steady state

velocity profiles are compared with the measured data in Fig. i-(c). It

is shown in the figure that the velocity profiles obtained using

different time-advancing techniques collapse into a single line at each

@-location and that the numerical results are in very good agreement with

the measured data.

The mass imbalance for the polar cavity flow, obtained using the

large time-step for each time-advancing scheme, is shown in Fig. 2. The

mass imbalance produced by the ITA is one order of magnitude smaller than

that produced by the SMAC. This result indicate that the ITA can most

strongly enforce the conservation of mass and that the use of an

under-relaxation do not obscure the numerical results. The

ever-increaslng mass imbalance produced by the PISO is mostly caused by

the second corrector step for which the driving force is the momentum

imbalance. For a small time-step size, the three methods yield equally

accurate numerical results. However, the trend of the mass imbalance

produced by the three methods remains the same as that shown in Fig. 2.

Vortex Shedding Behind a Circular Cylinder

A laminar flow over a circular cylinder at Reynolds number i00 is

considered below. The Reynolds number is based on the diameter of the

cylinder and the free stream velocity. A survey of measured data and a

set of numerical results obtained using the SMAC can be found in Ref.

[2]. In Ref. [2], the flow equations transformed onto a cylindrical-polar

18



coordinates were solved using a fully staggered mesh. In the present

calculations, the inlet boundary is located at 8r upstream of the

circular cylinder, the exit boundary is located at ll0r downstream of the

circular cylinder, and the side boundaries are located at 8r away from

the circular cylinder. The flow domain is discretized by 146xi01 grid

points in x-, and y-coordinate directions, respectively. A uniform flow

is prescribed at the inlet boundary and the vanishing gradient boundary

condition is used at the exit boundary. A vanishing normal gradient of

the tangential velocity and a vanishing transverse velocity are

prescribed at the side boundaries. The flow field is perturbed by

twisting the cylinder at the beginning so that the calculated velocity

field can initiate the self-sustalned oscillatory motion [2].

The streaklines calculated using the PISO are shown in Fig. 3. The

streaklines show that the modified PISO can cleanly resolve the vortex

shedding behind the circular cylinder.

The calculated Strouhal numbers are compared with the measured data

as well as the numerical results by Braza et al. [2] and Eaton [14] in

Table 2. The normalized time for flow over a circular cylinder is based

on the free stream velocity and the radius of the cylinder. It can be

seen in the table that the Strouhal number (for Reynolds number of ii0)

obtained using a penalty finite element method [14] is smaller than than

the measured data. The Strouhal numbers obtained using the three

time-advanclng schemes, implemented on a pressure-staggered mesh and

using the new pressure correction algorithm, are in very good agreement

with the measured data.

The velocity vectors and the instantaneous streamlines passing

through the separation and/or reattachment locations for the flow over

19



the circular cylinder is shown in Fig. 4. Instantaneous streamlines for

unsteady flows are considered to be not meaningful by many researchers as

yet. However, a close examination of the streamlines shown in Fig. 4

reveals that the mass flow rate across the streamlines are by far smaller

than that along the streamlines. Thus the streamlines passing through the

separation and the reattachment locations can be considered as an

enclosure of the eddy attached to the cylinder. This interpretation of

the instantaneous streamline is similar to that for steady flows. It can

be seen in the figure that the attached vortex grows slowly until it

becomes almost as large as the circular cylinder, and then the fully

grown vortex is swept into the wake region by the nearby free stream.

These figures clearly indicate that the low frequency (or the long

period) of the vortex shedding is caused by the growth time of the

attached vortex. It is also shown in the figure that each vortex shed

into the wake region is accompanied by an alternating switching of the

reattaching streamline with one of the two instantaneous streamlines

passing through the separation locations. Undoubtedly, the instantaneous

streamlines help to better understand the vortex shedding mechanism. It

is also shown later in this section that the streamlines help to clearly

identify the separation and reattachment locations.

The streamline contours and a carpet plot of stream function at

t - 0.14T are shown in Figs. 5-(a) and 5-(b), respectively. The saddle

point shown in Fig. 5-(b) is caused by a closely spaced counter-ratating

vortices, see Ref. [15] for more details.

The evolution of stagnation location in time for flow over a

circular cylinder is shown in Fig. 6. It can be seen in Fig. 6-(b) that

the numerical result obtained using the PISO exhibits a strong dependence
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on the time-step size. The amplitude and the phase difference obtained

using the PISOwith At-0.05 is in worst agreementwith the other

numerical results including the one obtained using the samePISOwith

At=0.01. As the time-step size is decreased, both numerical results

obtained using the SMACand PISOapproach that obtained using ITA. These

results indicate that the ITA yields the most accurate results due to its

capability to resolve the nonlinearity in each componentof the momentum

equation and the nonlinear coupling of the u- and v-velocity and the

capability to enforce the conservation of massmost strongly. The strong

dependenceof the PISOon the time-step size is caused by the second

corrector step which cause the velocity field less divergence free and by

the linearized momentumequation that yields a solution regardless of the

conservation of mass is rigorously satisfied or not.

The time-varying separation and reattachment locations are shown in

Fig. 7-(a) and 7-(b), respectively. For the flow over the circular

cylinder, the meshand the time-step size are small enough to accurately

resolve the vortices generated around the smooth cylinder. Thus, the

numerical results obtained using the ITA and SMACexhibit only a very

small phase difference, while the PISOyields a numerical result that

deviates most from the other numerical results. The reattachment location

presented in Ref. [2] is, in fact, another separation point located at

the symmetric lower part as shownin Fig. 4.

The lift and drag forces are shownin Figs. 8-(a) and 8-(b),

respectively. As in Fig. 7, the numerical results obtained using the ITA

and SMACare in very good agreementwith each other, while the PISOnot

only over-predict the amplitude but also yields a significant amount of

phase difference. The present numerical methodsyield slightly larger
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amplitudes for the lift and drag than those presented in Ref. [2].

Vortex Shedding Behind a Square Cylinder

A laminar flow over a square cylinder at Reynolds number 190 is

considered below. The Reynolds number is based on a side of the square

cylinder (b) and the free stream velocity. The measured Strouhal number

and a numerical result obtained using the ITA can be found in Ref. [6].

In Ref. [6], the flow domain was discretized using a fully staggered mesh

and the convection terms were discretized using a formally third order

accurate QUICKEST scheme. In the present calculations, the inlet boundary

is located at 5.5b upstream of the square cylinder, the exit boundary is

located at 35b downstream of the square cylinder, and the side boundaries

are located at 5.5b away from the square cylinder. The flow domain is

discretized by 131x101 grid points in x-, and y-coordinate directions,

respectively. The boundary conditions and the initial perturbations are

the same as those used for the flow over a circular cylinder. For the

flow over the square cylinder, the numerical methods yield the

self-sustained oscillatory motion without the use of the initial

perturbation. However, it takes a while for the fully oscillatory motion

to be established.

The streaklines calculated using the SMAC are shown in Fig. 9. The

streaklines show that the SMAC can cleanly resolve the vortex shedding

behind the square cylinder.

The calculated Strouhal numbers are compared with the measured data

as well as the numerical results obtained by Davis and Moore using the

QUICKEST scheme [6] in Table 3. The normalized time for flow over the

square cylinder is based on the free stream velocity and a side of the
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square cylinder. It can be seen in the table that the present numerical

results are in very good agreementwith the measureddata, while the

numerical results obtained by Davis and Moore deviate further as the mesh

is refined. The calculated Strouhal number, which deviates farther from

the measureddata as the meshis refined, is caused by the QUICKEST

scheme [6].

The velocity vectors and the streamlines for the flow over the

square cylinder is shownin Fig. i0. As in the flow over the circular

cylinder, the attached vortex grows slowly until it becomesalmost as

large as the square cylinder, and then the fully grown vortex is swept

into the wake region by the nearby free streaml Thus the vortex shedding

mechanismand the cause for the low frequency vortex shedding are

essentially the sameas those for the flow over the circular cylinder.

However, in the present case, the attached vortex is split into two parts

by the sharp corner and hence, there almost always exists another pair of

separation and reattachment locations than the flow over the circular

cylinder.

The evolution of stagnation location in time for flow over a square

cylinder is shown in Fig. ii. It can be seen in Fig. ll-(b) that the

numerical results obtained using different time-advancing schemesyield

small phase differences, but all the numerical results exhibit neatly

organized oscillatory motion.

The time-varying lift coefficient for flow over the square cylinder

is shownin Fig. 12. It can be seen in the figure that the amplitude

obtained using the PISOwith At=0.05 is in worst agreementwith the other

numerical results including the one obtained using the samePISOwith

At=0.01. As the time-step size is decreased, the amplitudes obtained
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using the SMACand PISOapproach that obtained using the ITA. Again, the

undesirably strong dependenceof the PISOon the time-step size is caused

by the second corrector step which cause the velocity field to deviate

further from a divergence free velocity field.

The drag for flow over the square cylinder is shownin Fig. 13. For

the flow over the square cylinder, the time-step size is not small enough

to accurately resolve the initially perturbed flow field. Thus, the

numerical results obtained using the different time-advancing schemes

exhibit large phase differences. However, all the numerical methods,

except the PISO, yield almost the same frequencies and the amplitudes.

CONCLUSIONSANDDISCUSSION

Calculations of a polar cavity flow starting from rest and

self-sustained oscillatory flows over a circular and a square cylinders

using the ITA (Iterative Time-Advancing Scheme), SMAC(Simplified Marker

and Cell) and PISO (Pressure Implicit Splitting of Operators) are

presented.

The numerical results show that the SMACis the most efficient

computationally and yields accurate results. Calculations of the

lid-driven polar cavity show that the SMACis even competetive with

steady flow solvers to solve steady flows while the ITA, PISOand many

other unsteady flow solvers are not [9,15].

The ITA can account for the nonlinearity in each componentof the

momentumequation and the nonlinear coupling of the u- and v-velocity

through the iteratlve solution of the flow equations. Thus the ITA yields

the most accurate numerical results for a large time-step size. The SMAC

and PISOare non-iterative time-advancing schemesand hence these methods
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can only weakly account for the nonlinearity in the Navier-Stokes

equations through the use of predictor and corrector steps. As the

time-step size is decreased, the numerical results obtained using the

SMACand PISOapproach those obtained using the ITA, which shows that the

SMACand PISOcan accurately resolve the nonlinearity in the

Navier-Stokes equations if a sufficiently small time-step is used.

The SMACand PISO are quite different in their nature. In the SMAC,

the predicted velocity field is corrected to satisfy the conservation of

mass and the conservation of momentumis achieved by obtaining a

consistent pressure. In the PISO, a second corrector step is introduced

to correct the momentumimbalance. The numerical results show that the

second corrected velocity field deviates farther from a divergence free

velocity field and that the linearized momentumequation yields a

solution regardless of the conservation of mass is rigorously satisfied

or not. Thus the PISOexhibits an undesirable strong dependenceon the

time-step size and it is also weakly convergent. Thesenumerical results

indicate that accurately enforcing the conservation of mass is very

important to enhance the convergence nature as well as to obtain accurate

numerical results. The capability of each time-advancing schemeto

accurately resolve the unsteady flows is largely attributed to the

capability of the new pressure correction algorithm which can strongly

enforce the conservation.

Numerical results for flows over a circular and a square cylinders

show that a small vortex attached to the cylinder grows very slowly in

time until it becomesas large as the cylinder and then the fully grown

vortex is shed into the wake region. Each vortex shedding is accompanied

by an alternating switching of the reattaching streamline with one of the
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two streamlines passing through the separation locations, and the

alternating switching generates a small attached vortex. Eachvortex

shedding constitute a half cycle of the self-sustained oscillatory

motion. The vortex leaving the cylinder is of the samesize as that of

the cylinder, and hence the low frequency is caused by the growth time of

the attached vortex.
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TABLEI

Computational Efforts for EachUnsteady Flow Solution Method
(CRAY/YMPcpu-time per each grid point and per each time step)

ITA SMAC PISO
,i

1.7x10 -4 2.5xi0 "5 4.5xi0 -5

(unit in second)

TABLE II

Strouhal Numbers (St-2fr/U o) for Flow over a Circular Cylinder

ITA

A_ 0.05

S t 0.158

SMAC

0.05 0.01

0.155 0.157

PISO

0.05 0.01

0.164 0.160

Ref. [2]

0.01

0.16

Ref. [14] Exp't

0. 147 0.16

AT

St

TABLE III

Strouhal Numbers (St-fb/U o) for Flow over a Square Cylinder

ITA

0.05

0.133

SMAC

0.05 0.01

0.126 0.13

PISO Ref. [6] Exp't

0.05 0.01 0.05 a 0.05 b

0.142 0.135 0.159 0.165 0.146

(a: 41x40 mesh, b: 51x62 mesh)
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Ngure 4.-- Velocity vectors and instantaneous streamline _ntoum _Nng through the separation

and reattachment locations.
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(a) Contour plot.

(b) Carpet plot.

Figure 5.-- Streamlines at t = O.t4T,
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